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We review the memory matrix formalism with the example of parity-preserving transport, then
switching to the parity-violating case (time-reversal symmetry is preserved) where anomalous Hall
effect is expected to emerge. Such terms have already been revealed from pure hydrodynamic
analysis in high energy physics. As another independent tool, memory matrix formalism is believe
to provide the same result for the overlapping regime with hydrodynamics. In this letter, we will
show the accodance of them.
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I. MEMORY MATRIX FORMALISM

A. Basic Properties of Kubo Pair

Definition 1. (Kubo Pair) The Kubo pair, or canonical correlation function [1] of two operators A and B is
defined as (with kB = h̄ ≡ 1)

CAB :=
1

β

∫ β

0

dλ ⟨A†(t)B(iλ)⟩T ≡ T

∫ 1/T

0

dλ ⟨Ae−iLtB(iλ)⟩T , (1)

where ⟨· · · ⟩T is the finte-temperature statistical average, A(t) ≡ eiHtAe−iHt and L ≡ [H, ◦] is the Liouville operator
(so that A(t) ≡ eiLtA).

Claim 1.

∂tCAB(t) = −iT ⟨[A(t), B]⟩T (2)

▷ Expressing B(iλ) in terms of Liouville operator as well, we have

∂tCAB(t) = −iT

∫ 1/T

0

dλ
〈
ALe−iLtB(iλ)

〉
T
= −iT

∫ 1/T

0

dλ
〈
Ae−iLtL · e−LλB · e−H/T

〉
.

After the integration over λ, we obtain

∂tCAB(t) = −iT
〈
Ae−iLtL · (−L)−1(e−Lt − 1)B · e−H/T

〉
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= iT
〈
Ae−iLte−LtB · e−H/T

〉
− iT

〈
AeiLt ·B · e−H/T

〉
= iT

〈
Ae−Lt · e−iLtB · e−H/T

〉
− iT

〈
A · e−iLtB · e−H/T

〉
= iT

〈
A · e−LtB(−t) · e−H/T

〉
− iT

〈
AB(−t)e−H/T

〉
≡ iT

〈
A · e−H/TB(−t)eH/T · e−H/T

〉
− iT ⟨AB(−t)⟩T

= iT

(
⟨B(−t)A⟩T − ⟨AB(−t)⟩

)
≡ −iT ⟨[A,B(−t)]⟩T = −iT ⟨[A(t), B]⟩,

where in the line next to the last we explicitly write out the Liouville operator and cycle the trace. □

This result connects Kubo pair with the retarded Green function. By definition iGR
AB(t) := θ(t)⟨[A(t), B]⟩, so we

have

θ(t)∂tCAB(t) ≡ −TGR
AB(t). (3)

Integrating (3) over time, we get

1

T

(
CAB(t = ∞)− CAB(t = 0)

)
= −

∫ ∞

−∞
dtGR

AB(t) ≡ −
∫ ∞

−∞
dtGR

AB(t)e
−iωt|ω=0 ≡ GR

AB(ω = 0) ≡ χAB .

Assuming operators A and B decay at late time t → ∞, we then come to a somewhat counterintuitive result,

1

T
CAB(t = 0) = GR

AB(ω = 0) ≡ χAB , (4)

connnecting a fixed time (t = 0) quantity on the LHS to a fixed frequency (integral over time axis)
quantity on the RHS.

B. Memory Matrix Theory

The essense of memory matrix theory is to

• assign (freely) a selective set of long-lived operators (as hydrodynamic degree of freedom);

• perform a series of manipulation on CAB(z) to extract the dominating contribution to conductiv-
ities (σAB(z) ≡

1

T
CAB(z)).

Since perturbation theory for quantum mechanics is well-established, defining a “Hilbert space for operators” will be
helpful. To acheive this, we need to assign a complete inner product (◦ | ◦) on the linear space of operators. A natural
choice is the Kubo pair we defined above

(A(t)|B) := CAB(t), (5)

so from equation (4)

(A|B) ≡ (A(0)|B) ≡ CAB(t = 0) = TGR
AB(ω = 0) = TχAB . (6)

Note 1. The bilinearity of (◦ | ◦) is obvious. But to show (5) indeed define a inner product, we also have to prove
the complex conjugation (A(t)|B)∗ ≡ (B|A(t)) and positive-definiteness (A|A) ≥ 0. They can all been checked as
properties of Kubo pairs [1, 2]. Besides this, we can even show that such inner product is actually real and symmetric.
Time-translation symmetry also gives (A(−t)|B) ≡ (e−iLtA,B) = (A|B(t)) ≡ (A, eiLtB), indicating (iL)adj = −iL in
the operator Hilbert space. But one must be aware that, under the basis of long-lived operators (rather than the basis
of complete eigenstates), Liouville operator does not appear as a matrix. So the “adjoint” of one operator should not
be simply taken as the ”conjugate transpose” as in usual Quantum Mechanics. In fact, by moving the position of H
and cyclying the trace,

(A|L|B) ≡ 1

β

∫ β

0

1

Z
tr
{
e−βHAe−λH(HB −BH)eλH

}
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=
1

β

∫ β

0

1

Z
tr
{
e−βH(AH −HA)e−λHBeλH

}
≡ −(LA,B) ≡ −(A|Ladj|B),

we get Ladj = −L (and clearly iadj = i). For the full proof of the properties, please refer to my Xournal++ writting
notes.

Note 2. Strickly speaking, to define a useful Hilbert space, we also demand such inner product to be complete
and the Hilbert space to be separable1. But they have little to do with our main derivation so we just assume they
are true and leave the work to mathematicians.

With the help of this inner product, the laplace transformation of Kubo pair CAB(t) can now be written as

CAB(z) ≡
∫ ∞

0

dt eiztCAB(t) ≡
∫ ∞

0

dt eizt(A|e−iLt|B) = (A|i(z − L)−1|B).

In quantum mechanics, perturbation theory is done by splitting the ground state and excited states, or splitting
the Hilbert space into low-energy and high-energy sectors. In the same spirit, we can split the operator Hilbert space
into fast-decaying and long-lived sectors by introducing the projection operator

q ≡ 1− p ≡ 1−
∑
A,B

|A) ((A|B))
−1 |B) ≡ 1− 1

T

∑
AB

|A)χ−1
AB(B|.

Using the operator identity

(U − V )−1 ≡ U−1 + U−1V (U − V )−1, (7)

we have

(z − L)−1 ≡ ((z − Lq)− Lp)−1 ≡ (z − Lq)−1 + (z − Lq)−1Lp(z − L)−1

and the correlation function can be evaluated through

CAB(z) = i(A|(z − Lq)−1|B) + i
∑
C

(A|(z − Lq)−1L|C)(C|p(z − L)−1|B).

Note that by definition q|A) ≡ 0 for all long-lived operators A, so

(A|(z − Lq)−1|B) ≡
(
A

∣∣∣∣1z +
Lq

z2
+ · · ·

∣∣∣∣B)
=

1

z
(A|B) ≡ T

z
χAB .

For the other part, inputing the definition of p,

p(z − L)−1|B) ≡ 1

T

∑
CD

|C)χ−1
CD(D|(z − L)−1|B) ≡ 1

iT

∑
CD

|C)χ−1
CDCDB(z).

Thus we have

CAB(z)−
iT

z
χAB =

1

T

∑
CD

(A|(z − Lq)−1|C)χ−1
CDCDB(z)

=
1

T

∑
CD

(
A

∣∣∣∣(z−1 + z−1Lq(z − Lq)−1

)
L

∣∣∣∣C)
χ−1
CDCDB(z),

where identity (7) is again utilized. Expanding the parenthesis and using the property of projection operator q2 ≡ q
such that

q(z − Lq)−1 ≡ q

z
+

qLq

z2
+

qLqLq

z3
+ · · · = q

z
+

q(qLq)q

z2
+

q(qLq)(qLq)q

z3
+ · · · = q(z − qLq)−1q,

1 As a reminder, a Hilbert space is separable provided it contains a dense countable subset. Along with Zorn’s lemma, this means a
Hilbert space is separable if and only if it admits a countable orthonormal basis.
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we get

CAB(z)−
iT

z
χAB =

1

Tz

∑
CD

(A|L|C)χ−1
CDCDB(z) +

1

Tz

∑
CD

(A|Lq(z − qLq)−1L|C)χ−1
CDCDB(t).

Denoting iL|A) ≡ |Ȧ) (since |A(t)) ≡ eiLt|A)), and introducing the memory function2
MAC(z) :=

i

T
(Ȧ|q(z − qLq)−1q|Ċ),

NAB :=
1

T
(A|L|B) ≡ 1

T
(A|Ḃ) = χAḂ ≡ −1

T
(Ȧ|B) = −χȦB ,

(8)

we then arrive at the close equation for correlation function

CAB(z) ≡
1

z

{
iTχAB − i

∑
CD

NACχ
−1
CDCDB(z)− i

∑
CD

MAC(z)χ
−1
CDCDB(z)

}
,

or in a long-lived-operator-basis-independent form

C ≡ 1

z

(
iTχ− i(M +N)χ−1C

)
=⇒ C ≡ χ

1

M(z) +N − izχ
χ. (9)

So the generalized conductivities for operators A and B reads

σAB(ω) ≡
1

T
CAB(ω)

∑
CD

χAC

(
1

M(ω) +N − iωχ

)
CD

χDB . (10)

Namely, σAB is know as we have evaluated all static susceptibilities and memory matrices for long-lived operators.

C. Momentum Relaxation and Drude Formula

As an appetizer, we will focus on the isotropic system whose translation invariance is slightly broken so the (total)
momentum operator P is long-lived. Another two long-lived operators are charge current J and heat current Q.
They are believed to have a significant overlap (in the sense of static susceptibilities like (Jx|Px)) simply because in
the picture of normal phase (like Fermi Liquid), the motion of quasiparticles usually indicate the flow of both charge
and heat. But one must be aware that the validity of such guess may be questionable. Unlike integrable systems, in
general it is hard to determine the correct set of long-lived operators.

In the first case, our system is supposed to have both time-reversal and parity symmerty3. Under time-reversal
transformation, the retarded Green function is known to satisfy the Onsager reciprocal relation [3] (in the presence of
time-reversal-breaking magnetic fields)

GR
αβ(ω;B) = εαεβG

R
βα(ω;−B). (11)

For the simplest case here σxy = σyx. On the other hand, the rotation symmetry demands σxy = −σyx. So the
interplay of them requires the charge conductivity matrix to be diagonal σxx = σyy, and we are left to calculate

σxx ≡ σJxJx =
∑

A,B∈{J,Q,P }

χJxA

(
1

M − iωχ

)
AB

χBJx . (12)

Here matrix N = 0 because all three long-lived operators are time-reversal odd (which is usually the case). Similarly
since χAB ≡ GR

AB(ω = 0), the above argument can also be applied, giving χJxJy
= χPxPy

= χQxQy
= 0.

2 Matrix N is always antisymmetric from the property we have proven in Note 1.

(A|L|B) = −(A,LadjB) = −(B|L|A).

So clearly it vanishes in a time-reversal invariant theory (since the “operator state” |Ȧ) switch its sign under t 7→ −t). In fact, any
expression with an enen number of Liouville operator will vanishes under time-reversal transformation. So in general we cannot tell
any symmetric information about the memory function M(z), but it must be symmetric in a time-reversal invariant
theory.

3 In 2D the parity symmetry is just mirror symmetry x 7→ y, y 7→ −x (with magnetic field B reversed, if exists).
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D. Magntotransport

II. PARITY-VIOLATING TRANSPORT
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